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ANALYSIS OF BOUNDARY CONDITIONS FOR FACTORIZABLE DISCRETIZATIONS

OF THE EULER EQUATIONS

BORIS DISKIN� AND JAMES L. THOMASy

Abstract. In this article, several sets of boundary conditions for factorizable schemes corresponding

to the steady-state compressible Euler equations are evaluated. The analyzed model is a one-dimensional

constant-coe�cient problem. Numerical tests have been performed for a fully subsonic quasi-one-dimensional

ow in a convergent/divergent channel.

This paper focuses on the e�ect of boundary-condition equations on stability and accuracy of the discrete

solutions. Explicit correspondence between solutions and boundary conditions is established through a

boundary-condition-sensitivity (BCS) matrix. The following new �ndings are reported:

(1) Examples of stable discrete problems contradicting a wide-spread belief that employment of a one-

order-lower approximation schemes in an O(h)-small region does not a�ect the overall accuracy order

of the solution have been found and explained. Such counterexamples can only be constructed for

systems of di�erential equations. For scalar equations, the conventional wisdom is correct.

(2) A negative e�ect of overspeci�ed (although, exact) boundary conditions on accuracy and stability

of the solution has been observed and explained.

(3) Sets of practical boundary conditions for factorizable schemes providing stable second-order accurate

solutions have been formulated. These schemes belong to a family of second-order schemes requiring

second-order accuracy for some numerical-closure boundary conditions.

Key words. compressible Euler equations, factorizable discretization scheme, practical boundary con-

ditions, I-stability, B-stability

Subject classi�cation. Applied and Numerical Mathematics

1. Introduction. An e�ciency goal for the new generation of multigrid ow solvers is to arrive at

solutions of the governing system of equations in a total computational work that is a small (less than 10)

multiple of the operation count in one target-grid residual evaluation. Such e�ciency is de�ned as textbook

multigrid e�ciency (TME) [4, 5]. TME has been achieved for elliptic problems long ago [1, 2, 3, 6]. The

di�culties associated with extending TME for solution of the Navier-Stokes equations relate to the fact that

the Navier-Stokes equations are a system of coupled nonlinear equations that is not fully elliptic, even for

subsonic Mach numbers, but contains hyperbolic partitions. TME for the Navier-Stokes simulations can be

achieved if di�erent factors contributing to the system could be separated and treated optimally, e.g., by

multigrid for elliptic factors and by downstream marching for hyperbolic factors. An e�cient way to separate

the factors is the distributed relaxation approach proposed in [2, 3]. The general framework for achieving

TME in large-scale computational uid dynamics (CFD) applications has been discussed in [8, 20].

Design of a distributed relaxation scheme for Navier-Stokes systems can be signi�cantly simpli�ed if the

target discretization possesses two properties:
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(1) The discretization of the corresponding principally linearized system L is factorizable [3, 4, 12, 16, 17],

i.e., the discrete system determinant can be represented as a product of discrete scalar factors, each

of them approximating a corresponding factor of the determinant of the di�erential Navier-Stokes

equations.

(2) The obtained scalar factor discretizations are stable, easily solvable, and reect the physical anisotropies.

Some well-known discrete schemes are naturally factorizable, e.g., the staggered-grid discretization

scheme for incompressible ow dating back to the mid 60's [13, 14, 15]. However, the majority of dis-

crete schemes in current use are not factorizable. Even for factorizable schemes, the discretizations obtained

for scalar factors of the determinant are not often stable or/and have wrong strong-anisotropy directions.

The search for new factorizable discretization schemes is chiey motivated by the need to derive discrete

schemes with the resulting discretizations of scalar factors satisfying some desired properties (e.g., stability,

correct alignment with the physical anisotropies, compactness, availability of an e�cient relaxation scheme,

etc.) Recently, two families of factorizable discretization schemes for the compressible Euler equations have

emerged [12, 16].

The original paper [12] has demonstrated TME in solving factorizable discretizations of the compressible

Euler equations with solution values at the boundary and, wherever necessary, outside of the target compu-

tational domain overspeci�ed from the known exact solution of the di�erential problem. This formulation

is very attractive because it bypasses di�culties associated with boundary conditions and facilitates TME

demonstration. However, overspeci�ed boundary conditions are impractical; usually, the boundary data are

not available outside of the computational domain and even at the boundaries the data are incomplete and/or

accurate only to some �nite precision that might depend on the mesh. Multigrid considerations make the

overspeci�ed boundary conditions even less viable: on coarse grids, speci�cation of data located far beyond

the target computational domain is required. This paper studies more practical boundary conditions for the

factorizable discretization schemes introduced in [12].

In general, boundary conditions for a discrete problem may include two components: the physical bound-

ary conditions and the numerical-closure equations. The former are discrete approximations to the boundary

conditions of the target di�erential problem. The latter are special discrete approximations (di�erent from

the interior approximations) to the di�erential equations usually de�ned within an O(h)-small boundary

neighborhood.

This paper focuses on the e�ect of boundary-condition equations on stability of the discrete solutions.

For steady-state discrete problems, there are two relevant types of stability: (A) stability of di�erence

approximations to di�erential operators and (B) stability of discrete solutions with respect to boundary data.

Because the �rst type of stability describes the properties of the interior approximations it is referenced in

this paper as I-stability; the second type of stability is referenced as B-stability.

For a discrete operator Lh approximating the di�erential constant-coe�cient operator L, the property

of I-stability can be de�ned as follows: Let the symbols of the di�erential operator L[u] and the discrete

operator Lh[u] be de�ned as L(��) = e�i(���e)L[ei(���e)] and Lh(w) = e�i(w�j)Lh[ei(w�j)], respectively, where

e = (x; y; z) is a coordinate vector, �� = (�x; �y; �z) are frequencies of a continuous Fourier component,

j = (jx; jy; jz) are the grid indexes, and w = (!x; !y; !z); 0 � j!xj; j!yj; j!zj � � are normalized Fourier

frequencies.

De�nition of I-stability: The discrete operator Lh is an I-stable approximation to the di�erential operator

L if Lh(w) = 0 implies that L(w=h) = 0.

This de�nition of I-stability requires from the discrete operator to have no global (Fourier-component)
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solutions to the homogeneous discrete equations besides those that are also solutions of the corresponding

homogeneous di�erential equations. Most higher-than-�rst-order di�erence approximations admit some spu-

rious solutions that do not approximate the solutions of the di�erential equations. For I-stable di�erence

approximations, these spurious solutions should be local, i.e., (nearly) vanishing beyond some neighborhood

that shrinks to a zero-measure set as the mesh size h tends to zero. In boundary-value problems, the spurious

solutions of I-stable di�erence approximations are usually exponential functions of the grid indexes. These

functions represent the discrete boundary layers and fast decrease from the boundary toward the interior.

A wide (2h) central-di�erencing approximation to the convection operator (�a � 5), where �a is a constant

vector, represents an I-unstable approximation because the corresponding homogeneous discrete equation

admits several solutions: a constant corresponding to a physical constant solution of the di�erential equation

and functions oscillating with the highest normalized frequency � in some (or all) coordinate grid directions.

The latter functions represent global spurious discrete solutions with the unit amplitude everywhere in the

interior. These discrete solutions do not approximate solutions of the di�erential equation. Global spurious

solutions are not necessarily highly oscillating. Varying the Mach number parameter in the Scheme # 1 from

[12], one can easily construct examples of I-unstable approximations with smooth global spurious solutions.

The notion of I-stability is a generalization of the notion of h-ellipticity widely used in multigrid theory.

A discrete operator is h-elliptic if the corresponding discrete homogeneous equation does not admit highly

oscillatory solutions. If the target di�erential solutions are smooth on a given grid, I-stability implies h-

ellipticity.

For constant-coe�cient operators, a di�erence approximation is I-stable if the number of characteristic-

polynomial roots with the unit amplitude is equal to the number of linearly independent solutions of the

homogeneous di�erential equation. The number of roots with amplitudes di�ering from one may be arbitrary.

The discrete solutions corresponding to the roots with the unit amplitude are referred as physical solutions.

The physical solutions are associated with the physical boundary conditions. The coe�cients of the spurious

solutions are strongly inuenced by the numerical-closure equations. All the di�erence approximations

analyzed in this paper are I-stable.

Let us de�ne the boundary data as known quantities used in formulation boundary conditions, e. g.,

solution values at the boundary (Dirichlet data), solution derivatives at the boundary (Neumann data), the

source functions for the interior equations (numerical-closure data), etc.

De�nition of B-stability: A discrete scheme approximating a di�erential problem is stable with respect to

boundary data (B-stable) if for any �xed (independent of mesh size h) perturbation of boundary data, the

sequence of discrete solutions converges as h tends to zero.

B-stability implies that the discrete scheme remains meaningful even if the boundary data are not

precisely speci�ed. Even I-stable di�erence approximations with physically realistic boundary conditions

may become B-unstable. Moreover, B-stability may depend on norms in which solution convergence is

considered. Examples of discrete schemes for boundary-value problems that are B-stable in some common

integral norms but B-unstable in the L1 norm are shown in Section 6.

This paper also represents an attempt to formalize our intuitive understanding of practical discrete

boundary conditions. Assuming that the target di�erential problem has a reasonable set of physical boundary

conditions and is well posed, the four requirements for practical discrete boundary conditions supplementing

an I-stable discrete approximation in the interior are formulated as following:

(1) Location requirement: The discretization of physical boundary conditions should be speci�ed at the

boundary.
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(2) Well-posedness requirement: The obtained discrete problem should be well posed, i.e., possess a

unique solution (on a given grid) continuously dependent on the problem data.

(3) B-stability requirement: The discrete problem should be B-stable.

(4) Accuracy requirement: The accuracy of the discrete solutions should be determined by the approx-

imation order of the interior discrete equations, i.e., should not deteriorate because of boundary

conditions, either the physical or numerical-closure type.

The overspeci�ed boundary conditions, while often leading to well-posed discrete formulations, obviously

violate the location requirement (1); what is less obvious, in some cases, they also violate the B-stability (3)

and accuracy (4) requirements. Examples are shown in Section 6.

A detailed discrete analysis is employed in this paper to evaluate several sets of boundary conditions. The

model is a one-dimensional constant-coe�cient problem corresponding to the compressible Euler equations,

although the methodology applies to general systems. The interior discretizations are I-stable factorizable

schemes derived in [12]. Explicit correspondence between solutions and boundary conditions is established

through a boundary-condition-sensitivity (BCS) matrix. Analysis of coe�cients of the BCSmatrix provides

reliable predictions for B-stability and accuracy of the discrete solutions. The following new �ndings are

reported:

(1) Examples of I-stable discrete problems contradicting a wide-spread belief that employment of a

one-order-lower approximation scheme as numerical-closure equations in an O(h)-small region does

not a�ect the overall accuracy order of the solution have been found and explained. Such coun-

terexamples can only be constructed for systems of di�erential equations. For scalar equations, the

conventional wisdom is correct.

(2) A negative e�ect of overspeci�ed (although, exact) boundary conditions on accuracy and B-stability

of the solution has been observed and explained.

(3) Sets of practical boundary conditions for factorizable schemes of [12] that provide B-stable second-

order accurate solutions have been formulated. These schemes belong to a family of second-order

schemes requiring second-order accuracy for some numerical-closure boundary conditions.

The material in this paper has been organized in the following order: Section 2 formulates the model

di�erential constant-coe�cient problem. A family of factorizable discretizations for the model problem is

outlined in Section 3. The discrete solution structure is analyzed in Section 4. Section 5 introduces and

illustrates the analysis of discrete boundary conditions. Section 6 de�nes and analyzes several sets of bound-

ary conditions employed for two factorizable discretizations. The results of numerical tests performed for

quasi-one-dimensional compressible subsonic ow in a convergent-divergent channel are reported in Section 7.

Section 8 contains concluding remarks as well as directions for future research.

2. Model Problem. The set of the quasi-one-dimensional nonconservative Euler equations is given by

u@xu+
1
�
@xp = 0;

�c2@xu+ u@xp = �pu�x
�
;

( � 1)�@xu+ u@x� = �( � 1)�u�x
�
;

(2.1)

where �(x) is the area distribution. The pressure p, internal (thermal) energy �, density �, and sound speed

c are related as

p = ( � 1)��;(2.2)

c2 = p=�;(2.3)
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where  is the ratio of speci�c heats.

The corresponding model problem0
B@

�u@x
1
�
@x 0

�c2@x �u@x 0

( � 1)��@x 0 �u@x

1
CA
0
B@

u

p

�

1
CA =

0
B@

f1(x)

f2(x)

f3(x)

1
CA :(2.4)

assumes that the coe�cients �u; �; c, and �� are constants unrelated to the unknown functions (u; p; �). In

the subsonic regime, a natural set of boundary conditions is u and � speci�ed at the inow boundary and p

speci�ed at the outow boundary. With this set of boundary conditions the problem (2.4) is well posed.

The third equation is decoupled from the other equations. Thus, for the purpose of analysis, we can

focus on the system of two constant-coe�cient equations

L q = f ;(2.5)

where

L �

 
�u@x

1
�
@x

�c2@x �u@x

!
;(2.6)

q = (u; p)T , and f = (f1; f2)
T The determinant of the matrix operator L is the full-potential operator

F =
�
�u2 � c2

�
@xx:(2.7)

3. Factorizable Discretizations. In this section, we briey consider derivation of factorizable dis-

cretizations for the model problem (2.5). Such schemes for the three-dimensional Euler equations have been

derived in [12]; generalization to conservative schemes has been discussed in [11].

The starting point is a \basic" collocated-grid discretization, Lhbasic, for the matrix operator L of (2.6)

de�ned as

Lhbasic =

"
�u@u 1

�
@c

�c2@c �u@d

#
;(3.1)

where the discrete derivatives, @u; @c; and @d are second-order accurate upwind (upwind-biased), central,

and downwind (downwind-biased) di�erence approximations, respectively. The determinant of Lhbasic is a

discrete approximation to the full-potential operator given by

�u2@u@d � c2 (@c)
2
:(3.2)

This discrete approximation is not I-stable for subsonic Much numbers (M = �u=c < 1) and has an incorrect

(streamwise) direction of strong coupling for near-sonic Much numbers (M � 1). An I-stable discrete

approximation for the full-potential operator (2.7) would be

Fh =
�
�u2 � c2

�
@hxx;(3.3)

where @hxx is an I-stable approximation to the second derivative. A way to achieve I-stability for the discrete

full-potential factor is to replace the discretization �u@d with �u@d + Ah, so that the discrete full-potential

operator is transformed to a desired (I-stable) one. This transformation implies that

Ah =
�
�u@u

��1
Dh;(3.4)

Dh = Fh �
�
�u2@u@d � c2 (@c)

2
�
;(3.5)
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where Fh is a desired discretization of the full-potential operator. Assuming that Fh is second-order accurate,

Ah is O(h2)-small, and the overall second-order discretization accuracy is not compromised. The operator�
�u@u

��1
is a nonlocal operator and its introduction can be e�ected through a new auxiliary variable  h and

a new discrete equation �u@u h = Dhph. Finally, a family of factorizable I-stable discretizations for (2.6) is

formulated as

r1(q
h)j := �u@uuhj +

1
�
@cphj = f1j ;

r2(q
h)j := �u@u hj �D

hphj = 0;

r3(q
h)j := �c2@cuhj +  hj + �u@dphj = f2j ;

(3.6)

where qhj = (uhj ;  
h
j ; p

h
j )
T , f1j = f1(jh), and f

2
j = f2(jh)

4. Solutions. Let the exact solution of the di�erential problem (2.5) de�ned on the interval x 2 [0; 1]

be

qexact =

 
uexact

pexact

!
=

 
Cu

Cp

!
ei�x;(4.1)

where � is an arbitrary frequency. Then 
f1(x)

f2(x)

!
=

 
�f1
�f2

!
ei�x;

 
�f1
�f2

!
=

 
�uCu +

1
�
Cp

�c2Cu + �uCp

!
i�:(4.2)

The corresponding system of discrete equations is

Lhqh �

0
B@

�u@u 0 1
�
@c

0 �u@u �Dh

�c2@c 1 �u@d

1
CA
0
B@

uh

 h

ph

1
CA =

0
B@

f1j
0

f2j

1
CA ;(4.3)

where j = 1; 2; : : : ; N � 1; N = 1=h; f1j = f1(jh), and f
2
j = f2(jh). A discrete representation of the exact

solution (4.1) on a grid with mesh size h is given by

qhexact �

0
B@

uhexact

 hexact

phexact

1
CA =

0
B@

Cu

0

Cp

1
CA ei!j ;(4.4)

where ! = �h is a normalized frequency. The system (4.3) is subject to physical boundary conditions

u0 = Cu;  0 = 0; pN = Cpe
i�:(4.5)

Depending on the choice of di�erence operators, some numerical-closure equations may be required to com-

plete the discrete formulation. The solution to the problem (4.3), (4.5) can be sought as a combination

of a particular solution to the nonhomogeneous system of equations (4.3) and the general solution to the

corresponding homogeneous problem (3.6).

A particular solution to (4.3) can be found in the form

qhpar �

0
B@

uhpar

 hpar

phpar

1
CA =

0
B@

û

 ̂

p̂

1
CA ei!j :(4.6)
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0
B@

û

 ̂

p̂

1
CA =

�
Lh(ei!)

��10B@
�f1

0
�f2

1
CA ;(4.7)

where

Lh(�) =

0
B@

�u@u(�) 0 1
�
@c(�)

0 �u@u(�) �Dh(�)

�c2@c(�) 1 �u@d(�)

1
CA(4.8)

is a generalized symbol of the discrete operator Lh (4.3). The entries of Lh(�) are generalized symbols of

discrete scalar operators de�ned as responses of these operators on the exponent function �j . For exam-

ple, the generalized symbol of the central second-order di�erence approximation to the �rst derivative is

@c�j = @c(�)�j , @c(�) = 1
2h

�
�� 1

�

�
. Explicitly,

û = 1
�u@u(ei!)

�
�f1 �

@c(ei!)
�

�
��c2@c(ei!) �f1+�u@u(ei!) �f2

Fh(ei!)

��
;

 ̂ = D
h(ei!)

�u@u(ei!)

�
��c2@c(ei!) �f1+�u@u(ei!) �f2

Fh(ei!)

�
;

p̂ = ��c2@c(ei!) �f1+�u@u(ei!) �f2
Fh(ei!)

:

(4.9)

Recall, that Dh(�) = Fh(�)�
�
�u2@u(�)@d(�) � c2(@c(�))2

�
, and Fh(�) is a generalized symbol of the desired

discrete full-potential operator. The choice of the exact solution (4.1) as a Fourier mode guarantees that qhpar

is a second-order accurate approximation to qhexact. The solution (4.6), (4.9) satis�es the discrete equation

(4.3) but not the discrete boundary conditions.

The general solution of the homogeneous system of equations (3.6) is a linear combination of character-

istic solutions zk in the form zk(j) = vk�
j
k

qhhom �

0
B@

uhhom
 hhom
phhom

1
CA =

X
k

ckzk =
X
k

ckvk�
j
k;(4.10)

where zk are linearly independent solutions of Lhqh = 0 corresponding to the roots �k of the characteristic

equation

detLh(�) � �u@u(�)Fh(�) = 0:(4.11)

The general solution of the discrete equations (4.3) is

qh �

0
B@

uh

 h

ph

1
CA = qhhom + qhpar =

X
k

ckzk +

0
B@

û

 ̂

p̂

1
CA ei!j ;(4.12)

where ck are chosen to satisfy boundary conditions. For second-order accuracy, qhhom must be O(h2)-small.

The discretization error function is de�ned as

qh � qhexact:(4.13)
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5. Analysis of Boundary Conditions. Well-posedness of a linear discrete problem is equivalent to

solvability and solution uniqueness of the linear system of equations obtained by substituting the general

solution, qh, into the equations corresponding to (physical and numerical-closure) boundary conditions.

The unknowns in the linear system are the coe�cients ck. This condition immediately implies that the

total number of boundary-condition equations should be the same as the number of linearly independent

characteristic solutions, zk. Overspeci�ed boundary conditions seemingly violate this condition but often

provide a well-posed discrete problem. However, as we will show later in Section 6, the set of overspeci�ed

boundary conditions is equivalent to another set that exactly satis�es the relation between the number of

boundary conditions and the number of linearly independent characteristic solutions.

The number of linearly independent characteristic solutions (and therefore the number of free param-

eters ck) is de�ned by the length in mesh sizes (number of nodes minus 1) of the determinant operator

stencil. The stencil should be considered as a \maximal-length footprint" before any possible cancellations

occur. The stencil actually provides a more detailed information: the number of nodes left (right) of the

center indicates the total number of required (physical and numerical-closure) boundary conditions at the

left (right) boundary. Further speci�cation, including a separate count for physical and numerical-closure

equations, can be obtained from analysis of the set of linearly independent characteristic solutions. For

I-stable discretizations, the characteristic solutions corresponding to j�kj = 1 relate to the solutions of the

di�erential equations and are associated with physical boundary conditions. The characteristic solutions

corresponding to j�k j < 1 relate to the discrete solutions decreasing exponentially fast as functions of the

distance in mesh sizes from the left boundary. These characteristic solutions are associated with (de�ne

the number of) numerical-closure equations at the left (inow) boundary. Analogously, the characteristic

solutions corresponding to j�kj > 1 relate to the discrete solutions fast decreasing as functions of the distance

in mesh sizes from the right boundary and de�ne the number of numerical-closure equations at the right

(outow) boundary. Furthermore, analysis of the boundary-condition-sensitivity (BCS) matrix relating the

coe�cients ck with the boundary conditions gives a precise indication of B-stability and accuracy order of

the corresponding solution. For B-stability, all the coe�cients of BCSmatrix must be bounded as h tends

to zero. The accuracy order can be estimated from the amplitude of qhhom.

The following example illustrates the BCSmatrix analysis in application to a particular second-order

accurate discretization of a system of two simple uncoupled equations. The BCSmatrix analysis of the dis-

crete problem reveals that for achieving second-order accuracy, some of the numerical-closure equations must

be second-order accurate. This fact contradicts a common belief that one can keep the target accuracy order

by approximating numerical-closure equations with one-order lower accuracy than the interior equations.

The target di�erential equations are

@xv = g1;

@xw = g2:
(5.1)

Let the exact solution of the di�erential problem de�ned on the interval x 2 [0; 1] be 
v(x)

w(x)

!
=

 
Cv

Cw

!
ei�x;(5.2)

then  
g1(x)

g2(x)

!
=

 
Cv

Cw

!
i�ei�x;(5.3)
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and the boundary conditions associated with (5.1) are

v(0) = Cv ;

w(0) = Cw:
(5.4)

The second-order accurate discrete scheme employed for (5.1) on a uniform grid with mesh size h is de�ned

as  
@u 0

h2@(iv) @u

! 
vhj
whj

!
=

 
g1(jh)

g2(jh)

!
;(5.5)

where vhj and whj (j = 0; 1; : : : ; N;N = 1=h) are discrete functions representing the continuous solutions v(x)

and w(x), and

@uvhj � 1
h

�
3
2v

h
j � 2vhj�1 +

1
2v

h
j�2

�
;

@uwhj � 1
h

�
3
2w

h
j � 2whj�1 +

1
2w

h
j�2

�
;

@(iv)vhj � 1
h4

�
vhj+2 � 4vhj+1 + 6vhj � 4vhj�1 + vhj�2

�
:

(5.6)

The determinant of the matrix in (5.5) is a seven-point discrete operator with the maximal-length footprint

stencil

1

4h2

h
1 �8 22 �24 9 0 0

i
(5.7)

centered at the underlined position. Thus, a set of boundary conditions for the discrete equations (5.5) must

include four boundary conditions at the left boundary and two boundary conditions at the right boundary.

The characteristic equation for (5.5) is

1
�4
� 8 1

�3
+ 22 1

�2
� 24 1

�
+ 9+ 0�+ 0�2 = 0:(5.8)

Two zero coe�cients before the highest powers of � imply that there are two in�nity roots of the characteristic

polynomial. Equation (5.8) has total six roots �1;2 = 1; �3;4 =
1
3 , and �5;6 =1. A set of linearly independent

characteristic solutions zk(j) = vk�
j
k is given by

v1 =

 
1

0

!
and v2 =

 
0

1

!
(5.9)

corresponding to �1;2 = 1,

v3 =

 
0

1

!
and v4 =

0
B@ �h

2
�4
�

1

�2
4

�24�4�4+6�4
1
�4

+ 1

�2
4

j

1
CA =

 
27
16h

j

!
(5.10)

corresponding to �3;4 =
1
3 . Characteristic solutions corresponding to �5 and �6 exhibit nonzero values only

near the right boundary and are zero in the interior and at the left boundary. Two characteristic solutions

corresponding to �5;6 =1 are

z5 =

 
0

�N�1;j

!
and z6 =

 
0

�N;j

!
; �k;j =

(
0; if k 6= j;

1; if k = j:
(5.11)

The characteristic solutions, zk, are normalized to satisfy max
j
jzk(j)j = O(1). Two sets of boundary condi-

tions for the discrete system (5.5) are tested:
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Set (A):

(i) vh0 = Cv;

(ii) wh0 = Cw;

(iii)a
1
h

�
vh1 � vh0

�
= g1(h);

(iv) 1
h

�
wh1 � wh0

�
= g2(h);

(v) 1
h

�
3
2w

h
N�1 � 2whN�2 +

1
2w

h
N�3

�
= g2(1� h);

(vi) 1
h

�
3
2w

h
N � 2whN�1 +

1
2w

h
N�2

�
= g2(1)

(5.12)

Set (B) is similar to Set (A) with condition (iii)a replaced with a central second-order accurate approx-

imation

(iii)b
1
2h

�
vh2 � vh0

�
= g1(h):(5.13)

The equations (i) and (ii) correspond to the physical boundary conditions, all other equations are numerical-

closure equations. The only di�erence between sets (A) and (B) is the approximation order of the numerical-

closure equation (iii) at j = 1. The general solution can be represented in a form similar to (4.12) 
vhj
whj

!
=

6X
k=1

ckzk +

 
v̂

ŵ

!
ei!j ;(5.14)

where ! = �h,

v̂ = i�Cv
1

@u(ei!) ;

ŵ = i�
�
Cw � Cv

h2@(iv)(ei!)
@u(ei!)

�
1

@u(ei!) ;
(5.15)

and the generalized symbols of discrete �rst and fourth derivatives are

@u(�) = 1
h

�
3
2 � 2 1

�
+ 1

2
1
�2

�
;

@(iv)(�) = 1
h4

�
1
�2
� 4 1

�
+ 6� 4�+ �2

�
:

(5.16)

The exact solution (5.2) has been chosen so that the particular solution, (v̂; ŵ)T ei!j , of the problem (5.5) is

a second-order accurate approximation to (v; w)T . Thus, to keep second-order accuracy, the part of (5.14)

related to the homogeneous solution (
6P

k=1

ckzk) must be O(h
2). Since max

j
jzk(j)j = O(1); k = 1; � � � ; 6, the

amplitude of the homogeneous solution is determined by the coe�cients c = (c1; c2; : : : ; c6)
T .

The coe�cients c relate to the boundary conditions through matrix B.

Bc+ ~d = 0;(5.17)

where vector ~d = ( ~d1; ~d2; : : : ; ~d6)
T is the vector of items independent of ck obtained from substitution of the

general solution (5.14) to a particular set of boundary conditions. For set (A),

B =

0
BBBBBBBBB@

1 0 0 27
16h 0 0

0 1 1 0 0 0

0 0 0 � 9
8 0 0

0 0 � 2
3h

1
3h 0 0

0 0 0 � 1
3N�3h

3
2h 0

0 0 0 � 1
3N�2h � 2

h
3
2h

1
CCCCCCCCCA

(5.18)
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and

~d = �

0
BBBBBBBBB@

Cv � v̂

Cw � ŵ

g1(h)� v̂ 1�e
�i!

h
ei!

g2(h)� ŵ 1�e�i!

h
ei!

g2(1� h)� ŵ
3
2�2e

�i!+ 1
2 e
�i2!

h
ei(N�1)!

g2(1)� ŵ
3
2�2e

�i!+ 1
2 e
�i2!

h
ei(N)!

1
CCCCCCCCCA
:(5.19)

The main indication that the chosen set of boundary conditions is legitimate is the fact that matrix B is

invertible, i.e., detB 6= 0, and the discrete problem (5.5), (5.12) is well posed. Thus, the well-posedness

requirement (2) to practical sets of boundary conditions (Section 1) is satis�ed. From (5.17),

c = �B�1 ~d:(5.20)

Normalization of ~d entries facilitating the analysis of B-stability leads to

d = D ~d;(5.21)

where entries of the diagonal matrix D are chosen so that the boundary data appear in d with O(1)

coe�cients. For many practical boundary-condition sets, the coe�cients of the quantities of interest are

already O(1) in ~d, and therefore the vectors d and ~d are identical (D is the unity matrix), however, the

overspeci�ed boundary conditions result in distinguished d and ~d. The BCSmatrix is de�ned as

BCS = B�1D�1:(5.22)

In general, a discrete problem is B-stable in any norm (according to De�nition of B-stability in Sec-

tion 1), if all the entries of the BCSmatrix remain bounded as h tends to zero. Even with some unbounded

BCSmatrix entries (tending to in�nity as h tends to zero), the problem can still be B-stable in some com-

mon integral norms, such as L2 or L1. This is the case when the unbounded entries are located in the

rows of the BCSmatrix corresponding to non-physical characteristic solutions with �k separated from 1.

Furthermore, given the accuracy of boundary-condition approximations, the BCSmatrix predicts the size of

the coe�cients ck and, hence, the approximation accuracy of the discrete solution. Actually, for B-stability

and accuracy predictions, one does not need to compute the exact inverse B�1; it is enough to estimate the

asymptotic behavior of the entries of the BCSmatrix as functions of h.

In our example (set (A)),

BCS =

0
BBBBBBBBB@

O(1) 0 O(h) 0 0 0

0 O(1) O(1) O(h) 0 0

0 0 O(1) O(h) 0 0

0 0 O(1) 0 0 0

0 0 o(h) 0 O(h) 0

0 0 o(h) 0 O(h) O(h)

1
CCCCCCCCCA
;(5.23)

where o(h) is an exponentially small function of h (e.g., O
�
3�

1
h

�
). The discrete problem (5.5), (5.12) is

B-stable because the BCSmatrix (5.23) does not contain any entry growing as h tends to zero. The global

accuracy mainly depends on c1 and c2 because �1;2 = 1, and all other �k are well separated from zero. From
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Fig. 5.1. Discretization errors in v and w.

the �rst row of (5.23), the accuracy of computing the coe�cient c1 depends on the approximation of the

boundary conditions (i) and (iii). If boundary condition (i) is at least second-order accurate and boundary

condition (iii) is at least �rst-order accurate (that is the case in both sets (A) and (B)) then the coe�cient

c1 is computed with at least second-order accuracy. Similarly, the accuracy of computing the coe�cient c2

depends on the approximation of the boundary conditions (ii), (iii), and (iv). From the second row of (5.23),

one can conclude that the accuracy order in computing c2 usually cannot be better than the approximation

order for the boundary condition (iii). In set (A), the boundary condition (iii)a is a �rst-order accurate

approximation to the �rst equation of (5.5). Therefore, the third element in d is O(h)-small. Generally,

when a set of boundary condition is changed, the BCSmatrix should be recomputed. However, if two

sets di�er only in approximations to the same equations, the BCSmatrix remains unchanged. In set (B),

the boundary condition (iii)b is a second-order accurate approximation to the �rst equation of (5.5), and

d3 = O(h2). Thus, one can expect that, with set (A) of boundary conditions, function w is approximated

with �rst-order accuracy, and, with set (B), w is approximated with second-order accuracy. Function v is

approximated with second-order accuracy in any case. Figure 5.1 con�rms this prediction. On the �gure,

the L1-norm of discretization errors computed for Cv = 1; Cw = 2; � = 7� on a sequence of grids with

h = 2�4; 2�5; � � � ; 2�15 is shown.

6. Boundary Conditions for Factorizable Discretizations. In this section, the boundary condi-

tions for two versions of the discrete system (4.3) are considered. The versions di�er in the desired form

for the discrete full-potential operator and, therefore, in the discrete representation for the operator Dh.

In the �rst version, the discrete full-potential operator employs a �ve-point discrete operator @hxx = @u@d

that is a composition of second-order accurate upwind and downwind di�erence approximations for the �rst

derivative.

@hxxp
h
j =

1
h2

�
� 3

4p
h
j+2 + 4phj+1 �

13
2 p

h
j + 4phj�1 �

3
4p

h
j�2

�
;

Dhphj =
c2

h2

�
phj+2 � 4phj+1 + 6phj � 4phj�1 + phj�2

�
:

(6.1)

The discrete operator @hxx used in the second version is a three-point central approximation as

@hxxp
h
j =

1
h2

�
phj+1 � 2phj + phj�1

�
;

Dhphj =
3�u2+c2

4h2

�
phj+2 � 4phj+1 + 6phj � 4phj�1 + phj�2

�
:

(6.2)
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All other operators used in the versions of (4.3) are the same:

@uuhj =
1
h

�
3
2u

h
j � 2uhj�1 +

1
2u

h
j�2

�
;

@cphj =
1
h

�
1
2p

h
j+1 �

1
2p

h
j�1

�
;

@u hj = 1
h

�
3
2 

h
j � 2 hj�1 +

1
2 

h
j�2

�
;

@cuhj =
1
h

�
1
2u

h
j+1 �

1
2u

h
j�1

�
;

@dphj =
1
h

�
� 3

2p
h
j + 2phj+1 �

1
2p

h
j+2

�
;

(6.3)

For both the versions, the determinant is a seven-point upwind-biased operator implying that boundary

conditions must contain four boundary conditions speci�ed at the inow boundary and two boundary con-

ditions speci�ed at the outow boundary. Two physical boundary conditions (4.5) are de�ned at the inow

boundary, and one physical boundary condition is de�ned at the outow boundary. Thus, two inow and

one outow numerical-closure equations are required. In examples below, the following sets of boundary

conditions are analyzed:

(A) Overspeci�ed boundary conditions, where values of uh�1; u
h
0 ; u

h
N ; u

h
N+1; p

h
�1; p

h
0 ; p

h
N ; p

h
N+1, are speci�ed

from the exact continuous solution (4.1), and  h�1 =  h0 =  hN =  hN+1 = 0. The total number of

speci�ed values is twelve, but it can be reduced to the following six boundary conditions:

(i) uh0 = Cu;

(ii) �u@uuh1 +
1
�
@cph1 = f1(h);

(iii) �u@u h1 �D
hph1 = 0;

(iv) �u@u h2 �D
hph2 = 0;

(v) �c2@cuhN�1 +  hN�1 + �u@dphN�1 = f2(1� h);

(vi) phN = Cpe
i�:

(6.4)

The equations (ii), (iii), (iv), and (v), used in the boundary-condition formulation are modi�ed from

the interior equations because all the values with indexes �1; 0; N; N + 1 required for computation

are taken from the overspeci�ed boundary conditions and cannot be computed (except uh0 and phN )

from the general solution representation (4.12). Note also, that for computation of (v) one should

use the value of  hN�1 that, in turn, computed from a modi�ed equation �u@u hN�1 �D
hphN�1 = 0.

(B) Practical boundary conditions. Sets of practical boundary conditions that contain only physically

available boundary data are described. The sets di�er in the way they reconstruct value uh�1.

(i) uh0 = Cu;

(ii)  h0 = 0;

(iii) �u 1
h

�
 h1 �  h0

�
= 0;

(iv)b
1
h3

�
uh2 � 3uh1 + 3uh0 � uh�1

�
= 0;

(v) 1
h3

�
phN+1 � 3phN + 3phN�1 � phN�2

�
= 0;

(vi) phN = Cpe
i�:

(6.5)

The conditions (ii) and (iii) imply  h1 = 0. One can interpret the boundary conditions (iv)b and (v)

as a second-order extrapolation from the interior for the value of uh�1 and p
h
N+1. The conditions (iv)b

and (v) are numerical-closure boundary conditions because they relate outside values of functions

uhj and phj with inner values. These two conditions are equivalent to simultaneous modi�cation of

equations r1(q
h)1 = f1(h); r3(q

h)0 = f2(0); r1(q
h)N = f1(1) and r3(q

h)N�1 = f2(1� h). (See (3.6)

for de�nitions of rk(q
h)j .)
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(C) Practical boundary conditions. This and two other tested sets of boundary conditions are similar to

set (B). The only di�erence is the condition (iv)b is replaced with

(iv)c
1
h3

�
ph3 � 3ph2 + 3ph1 � ph0

�
= 0;(6.6)

The condition (iv)c may be regarded as a second-order extrapolation of the value p
h
0 from the interior.

The interior equation r3(q
h)0 = f2(0) is used to compute uh

�1. The condition (iv)c is equivalent to

simultaneous modi�cation of equations r1(q
h)1 = f1(h) and r2(q

h)2 = 0.

(D) Practical boundary conditions.

(iv)d
�u2�c2

h

�
1
2u

h
1 �

1
2u

h
�1

�
= �uf1(0)�

1
�
f2(0);(6.7)

The condition (iv)d reconstructs uh�1 from a second-order accurate central discrete approximation

to the equation (�u2 � c2)@xu = �uf1 �
1
�
f2 de�ned at the inow boundary. The equation is derived

by manipulating the di�erential equations from (2.5). This numerical-closure boundary condition is

equivalent to simultaneous modi�cation of equations r1(q
h)1 = f1(h) and r3(q

h)0 = f2(0).

(E) Practical boundary conditions.

(iv)e
�u
h

�
uh1 � uh0

�
+ 1

�h

�
1
2p

h
2 �

1
2p

h
0

�
= f1(h);(6.8)

The condition (iv)e is shown to illustrate the importance of second-order accuracy in approximating

the �rst and the third equations in (4.3) at the inow boundary. Simultaneously with (iv)e, the

interior second-order accurate equation r1(q
h)1 = f1(h) is used to recover uh�1.

6.1. Factorizable Scheme #1: 5-point Full-Potential Operator. Let @u and @d be second-order

upwind and downwind discrete operators, respectively, @c is the second-order central discretization, and

Fh = (�u2 � c2)@u@d. The generalized symbols are

@u(�) = 1
h

�
3
2 � 2 1

�
+ 1

2
1
�2

�
;

@d(�) = 1
h

�
� 3

2 + 2�� 1
2�

2
�
;

@c(�) = 1
h

�
� 1

2
1
�
+ 1

2�
�
;

Fh(�) = (�u2 � c2)@u(�)@d(�);

Dh(�) = c2
�
(@c(�))2 � @u(�)@d(�)

�
= c2

h2

�
1
�2
� 4 1

�
+ 6� 4�+ �2

�
:

(6.9)

A particular solution of the nonhomogeneous problem is found by substitution of the generalized symbols to

(4.9). The characteristic equation,

�
@u(�)

�2
@d(�) = 0;(6.10)

has six roots �1;2;3 = 1, �4;5 =
1
3 , and �6 = 3.

Before presenting the general solution, let us introduce some auxiliary symbol-like functions that are

required for de�ning linearly independent characteristic solutions.

@̂u(�) = 1
h

�
2 1
�
� 1

�2

�
;

@̂c(�) = 1
h

�
1
2
1
�
+ 1

2�
�
;

(6.11)

The six linearly independent characteristic solutions, zk(j) = vk(j)�
j
k , are given by:
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v1 =

0
B@

1

0

0

1
CA ;v2 =

0
B@

0

0

1

1
CA ; and v3 =

0
BB@

jh

�c2
�
�u2

c2
� 1
�

�jh��u

1
CCA(6.12)

corresponding to �1;2;3 = 1,

v4 =

0
B@

h

��c2h@c(�4)

0

1
CA =

0
B@

h
4
3�c

2

0

1
CA

and

v5 =

0
BB@

jh

�c2h
�
�u2

c2
@d(�5)@̂u(�5)

@c(�5)
� @̂c(�5)� j@c(�5)

�
�h��u @̂

u(�5)
@c(�5)

1
CCA =

0
BB@

jh

�c2
�
�2 �u

2

c2
� 5

3 + j 43

�
� 9

4h��u

1
CCA

(6.13)

corresponding to �4;5 =
1
3 , and

v6 = (�6)
�N

0
B@

h

��c2h@c(�6)

�h��u@
u(�6)
@c(�6)

1
CA = (�6)

�N

0
B@

h

� 4
3�c

2

�h 2
3��u

1
CA(6.14)

corresponding to �6 = 3. The characteristic solutions are normalized to satisfy max
j
jzk(j)j = O(1) for h

tending to zero.

For overspeci�ed boundary conditions (set (A)),

~d = �

0
BBBBBBBBB@

�uh0

� �u
2h�u

h
�1 +

1
2�h�p

h
0

� �u
2h (�4� 

h
0 + � h�1) +

c2

h2
(�4�ph0 + �ph�1)

� �u
2h� 

h
0 +

c2

h2
�ph0

��c2

2h �u
h
N + 3�u2�4c2

6�uh �phN+1

�phN

1
CCCCCCCCCA
; D =

0
BBBBBBBBB@

1 0 0 0 0 0

0 h 0 0 0 0

0 0 h2 0 0 0

0 0 0 h2 0 0

0 0 0 0 h 0

0 0 0 0 0 1

1
CCCCCCCCCA

(6.15)

d = D ~d = �

0
BBBBBBBBB@

�uh0

� �u
2 �u

h
�1 +

1
2��p

h
0

� �uh
2 (�4� 

h
0 + � h�1) + c2(�4�ph0 + �ph�1)

� �uh
2 � 

h
0 + c2�ph0

��c2

2 �u
h
N + 3�u2�4c2

6�u �phN+1

�phN

1
CCCCCCCCCA
;(6.16)

and

BCS =

0
BBBBBBBBB@

O(1) O(1) O(1) O(1) O(1) O(h)

O(1) O(1) O(1) O(1) O(1) O(h)

O(1) O(1) O(1) O(1) O(1) O(1)

O(1=h) O(1=h) O(1=h) O(1=h) O(1=h) O(1)

O(1=h) O(1=h) O(1=h) O(1=h) O(1=h) O(1)

O(1=h) O(1=h) O(1=h) O(1=h) O(1=h) O(1=h)

1
CCCCCCCCCA
;(6.17)
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where �qhj = (qhexact)j � (qhpar)j , �q
h
j � (�uhj ; � 

h
j ; �p

h
j )
T . The solution of the discrete problem (4.3) with

the overspeci�ed boundary conditions is obviously B-unstable according to De�nition of B-stability given in

the introductory Section 1. Indeed, upon any �xed perturbation of the overspeci�ed boundary conditions, the

coe�cients c4; c5, and c6 grow with h tending to zero. However, there are two factors that allow considering

this discrete scheme as satisfactory:

1) The unbounded entries of theBCSmatrix a�ect only the coe�cients of the \non-physical" character-

istic solutions, (i.e., the characteristic solutions corresponding to �k with amplitudes separated from

unity) and, therefore, decrease exponentially fast away from boundaries as functions of the mesh

index. So the discrete solution remains bounded in any common integral norm (e.g., L2-norm).

2) Within the \non-physical" characteristic solutions, only the amplitude of the auxiliary function  h

is unbounded because the entries of v4;v5, and v6 related to physical variables, uh and ph, are

O(h)-small in comparison with the entries related to  h.

Recall that the values of �qhj are O(h2)-small. Accordingly, if the overspeci�ed boundary conditions

are copied precisely from the exact continuous solution (4.1), the discrete solution of (4.3) is second-order

accurate for the physical variables, uh and ph, in any norm; the L1-norm of  h converges to zero as O(h), and

 h is O(h2)-small in any common integral norm. We found experimentally, that with exact overspeci�cation,

only c6 behaves as O(h); coe�cients c4 and c5 are still O(h2). This better-than-expected behavior for c4

and c5 is explained by cancellations in computation of B�1~d. Upon an arbitrary O(h2) perturbation of the

overspeci�ed data, all the three coe�cients, c4; c5, and c6, become O(h).

Vectors d are very similar for the sets (B) through (E); the only di�erence is the fourth element, d4. For

set (B),

d �

0
BBBBBBBBB@

d1

d2

d3

d
(B)
4

d5

d6

1
CCCCCCCCCA

= �

0
BBBBBBBBB@

Cu � û

� ̂

�u ̂ ei!�1
h

�ûe
i2!
�3ei!+3�e�i!

h3

�p̂e
i(N+1)!

�3eiN!+3ei(N�1)!�ei(N�2)!

h3

(Cp � p̂)eiN!

1
CCCCCCCCCA
;(6.18)

where û;  ̂, and p̂ are given in (4.9) with generalized symbols de�ned in (6.9).

d
(C)
4 = p̂ e

i3!
�3ei2!+3ei!�1

h3
;

d
(D)
4 = � 1

c2��u2

�
�uf1(0)�

1
�
f2(0)

�
� û e

i!
�e�i!

2h ;

d
(E)
4 = f1(h)�

�
û�u e

i!
�1
h

+ p̂ 1
�
ei!�e�i!

2h

�
:

(6.19)

The BCSmatrices for tested practical boundary conditions fell in two categories: for sets (B) and (C),

BCS =

0
BBBBBBBBB@

O(1) 0 O(h2) O(h3) o(h) 0

0 O(1) O(h) O(h2) O(h3) O(1)

0 O(1) O(h) O(h2) o(h) 0

0 0 O(h) O(h2) o(h) 0

0 0 O(h) O(h2) o(h) 0

0 0 o(h) o(h) O(h2) 0

1
CCCCCCCCCA
;(6.20)
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Fig. 6.1. Scheme # 1: L1 norms of discretization errors in u,  , and p.

and for sets (D) and (E),

BCS =

0
BBBBBBBBB@

O(1) O(h) O(h2) O(h) o(h) 0

0 O(1) O(h) O(1) O(h3) O(1)

0 O(1) O(h) O(1) o(h) 0

0 O(1) O(h) O(1) o(h) 0

0 O(1) O(h) O(1) o(h) 0

0 o(h) o(h) o(h) O(h2) 0

1
CCCCCCCCCA
:(6.21)

All the sets of practical boundary conditions provide solutions to the discrete problem (4.3) that are

B-stable. Elements d1; d2; d3, and d6 are O(h
2); d5 is O(1); d

(B)
4 and d

(C)
4 are O(1); d

(D)
4 is O(h2); and d

(E)
4

is O(h). Thus, for sets (B) through (D), the computation accuracy of coe�cients ck is at least second order,

i.e., the Scheme # 1 is second-order accurate for all the (physical and auxiliary) variables in any norm. For

set (E), �rst-order accuracy in computing c2; c3; c4, and c5 is expected. The impact of characteristic solutions

z2 and z3 is global for all variables because jh = O(1) for j = O(N); therefore, the discretization errors in

uh;  h, and ph are O(h) in any norm.

The results of numerical tests are shown in Figure 6.1. The tests have been performed for the non-
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dimensional constant coe�cients corresponding to a Mach number M = 0:5:

c =

r
1+ �1

2

1+M2 �1
2

;

� = c
2

�1 ;

�u = cM;

(6.22)

where  = 1:4. The parameters of the exact continuous solution de�ned on the interval x 2 [0; 1] have been

chosen as Cu = 1; Cp = 2, and � = 7�. The L1 norms of discretization errors have been measured for a

sequence of uniform grids with h = 2�4; 2�5; : : : ; 2�15. The results con�rm exactly the predictions made

by the BCSanalysis. An important observation is that the choice of boundary conditions strongly a�ects

the absolute value of the discretization errors. The gain from optimizing the set of boundary conditions

may exceed an order of magnitude in solution accuracy on a given grid. Among the practical boundary

conditions, set (C) seems to exhibit the minimum discretization errors for all the variables. For physical

variables, the discretization errors with overspeci�ed boundary conditions (set (A)) is minimal.

6.2. Factorizable Scheme #2: 3-point Full-Potential Operator. Let @u and @d remain the same

as in Factorizable Scheme # 1, and Fh = (�u2 � c2)@hxx, where @
h
xx is a three-point central second-order

accurate approximation to the second derivative. The full-potential factor has formally a three-point stencil,

however, its stencil should be considered as �ve-point long with zero coe�cients (due to cancellations) at

the outermost nodes. Therefore,

Fh(�) =
�u2 � c2

h2

�
0

�2
+

1

�
� 2 + �+ 0�2

�
(6.23)

and

Dh(�) = Fh(�) �
�
�u2@u(�)@d(�) � c2(@c(�))2

�
=

3�u2 + c2

4

1

h2

�
1

�2
� 4

1

�
+ 6� 4�+ �2

�
:(6.24)

The characteristic equation

@u(�)Fh(�) = 0(6.25)

has six roots �1;2;3 = 1, �4 =
1
3 , �5 = 0, and �6 = 1. The same �ve sets of boundary conditions (sets (A)

through (E)) are analyzed for Factorizable Scheme # 2. The scheme is characterized by presence of zero

and in�nite values of �k.

The solution representation as a linear combination of the functions zk = vk�
j
k , is relevant only for

�nite, nonzero eigenvalues. For zero eigenvalue, the corresponding characteristic solutions are localized at

the inow boundary, i.e., they exhibit nonzero values at the inow and are zero in the interior and at the

outow boundary. By analogy, characteristic solutions corresponding to in�nite eigenvalue are localized at

the outow boundary, i.e., they are nonzero only at some locations in the vicinity of the outow. In�nite

values of �k have already appeared in the example in Section 5. However, in that example, the characteristic

solutions related to in�nite �k a�ected only one variable, wh. In general, each characteristic solution may

a�ect all the solution variables. In such a case, the nonzero values for primitive variables corresponding to

a localized characteristic solution are usually featured at di�erent j-locations. The exact placements of the

nonzero entries are dictated by the three requirements:

(1) The corresponding matrix B relating the coe�cients of characteristic solutions to the boundary

conditions is invertible.

18



(2) The solution values outside of the limits de�ned by the placements are not needed for computing

residuals of the interior equations.

(3) Multiplication of the localized characteristic solution by a constant does not change residuals in the

interior equations.

Four linearly independent characteristic solutions corresponding to �nite (nonzero) eigenvalues can be

found in the usual form zk(j) = vk�
j
k.

v1 =

0
B@

1

0

0

1
CA ;v2 =

0
B@

0

0

1

1
CA ; and v3 =

0
B@

jh

�
�
�u2 � c2

�
�jh��u

1
CA(6.26)

correspond to �1;2;3 = 1, and

v4 =

0
B@

h

�h�c2@c(�4)

0

1
CA =

0
B@

h
4
3�c

2

0

1
CA(6.27)

corresponds to �4 =
1
3 .

The placement of nonzero values of the localized characteristic solutions depends on the choice of bound-

ary condition set. For overspeci�ed boundary conditions (Set (A)), the characteristic solution, z5, localized

at the inow (i.e., corresponding to �5 = 0) is

z5(j) =

0
B@

h �0;j

� 3�u
2+c2

2 �1;j

��uh �1;j

1
CA(6.28)

and the characteristic solution, z6, localized at the outow (i.e., corresponding to �6 =1) is

z6(j) =

0
B@

h �N�1;j

�� 3�u
2+c2

2 �N�2;j

�3��uh �N;j

1
CA(6.29)

For practical boundary conditions (sets (B) through (E)), the locations of nonzero entries are moving one

mesh size outward, i.e.,

z5(j) =

0
B@

h ��1;j

� 3�u
2+c2

2 �0;j

��uh �0;j

1
CA(6.30)

and

z6(j) =

0
B@

h �N;j

�� 3�u
2+c2

2 �N�1;j

�3��uh �N+1;j

1
CA(6.31)

For overspeci�ed boundary conditions (set (A)),

D =

0
BBBBBBBBB@

1 0 0 0 0 0

0 h 0 0 0 0

0 0 h2 0 0 0

0 0 0 h2 0 0

0 0 0 0 h 0

0 0 0 0 0 1

1
CCCCCCCCCA
; ~d = �

0
BBBBBBBBB@

�uh0

� �u
2h�u

h
�1 +

1
2�h�p

h
0

� �u
2h (�4� 

h
0 + � h�1) +

3�u2+c2

h2
(�4�ph0 + �ph�1)

� �u
2h� 

h
0 +

3�u2+c2

h2
�ph0

��c2

2h �u
h
N �

9�u2+4c2

6�uh �phN+1

�phN

1
CCCCCCCCCA
;(6.32)
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d = D ~d = �

0
BBBBBBBBB@

�uh0

� �u
2 �u

h
�1 +

1
2��p

h
0

� �uh
2 (�4� 

h
0 + � h�1) + (3�u2 + c2)(�4�ph0 + �ph�1)

� �uh
2 � 

h
0 + (3�u2 + c2)�ph0

��c2

2 �u
h
N �

9�u2+4c2

6�u �phN+1

�phN

1
CCCCCCCCCA
;(6.33)

and

BCS =

0
BBBBBBBBB@

O(1) O(1) O(1) O(1) O(h) O(h)

O(1) O(1) O(1) O(1) O(h) O(h)

O(1) O(1) O(1) O(1) O(1) O(1)

O(1=h) O(1=h) O(1=h) O(1=h) O(1) O(1)

O(1=h) O(1=h) O(1=h) O(1=h) O(1) O(1)

O(1=h) O(1=h) O(1=h) O(1=h) O(1=h) O(1=h)

1
CCCCCCCCCA
;(6.34)

The B-stability and accuracy estimations derived from the BCSanalysis of the overspeci�ed boundary

conditions are very similar to those obtained for Factorizable Scheme # 1:

1) The scheme is B-unstable in a strict sense, but the instability a�ects only auxiliary variable  h and

only in a O(h)-small vicinity of the boundary. The scheme is B-stable in common integral norms.

2) With the exactly overspeci�ed boundary conditions, the zone of O(h) accuracy for  h is two points

adjacent to the outow boundary ( hN�2 and  hN�1). All other solution values converge with the

second order as h tends to zero. The absence of a �rst-order convergence zone at the inow is a

result of cancellations implying O(h2)-small coe�cients c4 and c5.

3) Upon an arbitrary O(h2) perturbation of the overspeci�ed data, the coe�cients c4 and c5 become

O(h).

For practical boundary conditions, vectors d are the same as (6.18), (6.19). The BCSmatrices,

BCS =

0
BBBBBBBBB@

O(1) 0 O(h2) O(h3) 0 0

0 O(1) O(h) O(h2) 0 O(1)

0 O(1) O(h) O(h2) 0 0

0 0 O(h) O(h2) 0 0

0 0 O(h) O(h2) 0 0

0 0 0 0 O(h2) 0

1
CCCCCCCCCA
;(6.35)

for sets (B) and (C), and

BCS =

0
BBBBBBBBB@

O(1) 0 O(h2) O(h) 0 0

0 O(1) O(h) O(1) 0 O(1)

0 O(1) O(h) O(1) 0 0

0 0 O(h) O(1) 0 0

0 0 O(h) O(1) 0 0

0 0 0 0 O(h2) 0

1
CCCCCCCCCA
:(6.36)

for sets (D) and (E), guarantee B-stability for discrete problem (4.3) and second-order accuracy for sets (B)

through (D). With set (E), the solutions converge with �rst-order rate.

Numerical tests have been performed for Scheme # 2 with the same parameters (6.22) and the same exact

solution (Cu = 1; Cp = 2, and � = 7�) as for Scheme # 1 in Section 6.1. Convergence of the discretization
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Fig. 6.2. Scheme # 2: L1 norms of discretization errors in u,  , and p.

errors in the L1 norm is demonstrated in Figure 6.2. The qualitative results con�rm the predictions of the

BCSanalysis and are basically the same as in case of Scheme # 1:

1) The L1 norm of discretization errors in physical variables, uh and ph, is O(h2) for sets (A) through

(D) of boundary conditions and is O(h) for set (E).

2) The L1 norm of discretization errors in the auxiliary variable,  h, is O(h2) for sets (B), (C), and

(D) and is O(h) for sets (A) and (E); for set (A),  h is O(h2)-small in any common integral norm.

3) The minimum discretization errors for physical variables are achieved with the overspeci�ed bound-

ary conditions.

4) Set (C) is the best among practical boundary conditions and very competitive with the overspeci�ed

boundary conditions.

Quantitative comparisons between Schemes # 1 and # 2 reveal that the discretization errors in physical

variables, uh and ph, with Scheme # 2 are about two times smaller on the same grids.

7. Numerical Tests. This section reports results of numerical experiments performed for quasi-one-

dimensional subsonic ow in a convergent-divergent channel. The nonconservative nonlinear di�erential
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equations describing the problem are de�ned as

u@xu+
(�1)�

p
@xp = 0;

p@xu+ u@xp = �pu@x�
�
;

( � 1)�@xu+ u@x� = �( � 1)�u@x�
�
;

(7.1)

where  = 1:4 and �(x) = 1� 0:8x(1� x) is the area distribution term. The physical boundary conditions

u(0) = M(0)
h

1+ �1
2

1+M2(0) �12

i 1
2

= 0:53452;

p(1) = 1


h
1+ �1

2

1+M2(0) �12

i 
�1

= 1:13984;

�(0) = 1
(�1)

h
1+ �1

2

1+M2(0) �12

i
= 2:04082

(7.2)

corresponding to a ow with constant entropy and a Mach number of 0:5 at inow and outow, i.e., M(0) =

M(1) = 0:5; the equations are nondimensionalized by density and speed of sound at the sonic condition.

The Mach number distribution in the exact solution is shown on Figure 7.1.
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Fig. 7.1. The Mach number distribution in the exact solution

Discrete schemes approximating (7.1) in the interior belong to the family of factorizable schemes de-

scribed as

uhj @
uuhj +

(�1)�hj
phj

@cphj = 0;

uhj @
u hj �D

hphj = 0;

phj @
cuhj + �hj + uhj @

dphj = �phj u
h
j

@c�hj
�hj

;

( � 1)�hj @
cuhj + uhj @

u�hj = �( � 1)�hj u
h
j

@c�hj

�hj
;

(7.3)

where �hj = �(jh). The boundary conditions related to the fourth (energy) equation are the physical

boundary condition �h0 = �(0) and a numerical-closure equation corresponding to the �rst-order upwind

discretization @u�hj in the discrete equation de�ned at j = 1. Six di�erent discrete scheme have been tested

for the other three equations:

1. Factorizable Scheme # 2 with a three-point discretization for the full-potential factor and overspec-

i�ed boundary conditions.
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2. Factorizable Scheme # 1 with a �ve-point discretization for the full-potential factor and overspeci�ed

boundary conditions.

3. Factorizable Scheme # 2 with a three-point discretization for the full-potential factor and set (C)

of practical boundary conditions.

4. Factorizable Scheme # 1 with a �ve-point discretization for the full-potential factor and set (C) of

practical boundary conditions.

5. Factorizable Scheme # 2 with a three-point discretization for the full-potential factor and set (B)

of practical boundary conditions.

6. Factorizable Scheme # 1 with a �ve-point discretization for the full-potential factor and set (B) of

practical boundary conditions.
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Fig. 7.2. Nonlinear problem: L1 norms of discretization errors in u, p, and �.

The L1 norms of discretization errors are shown on Figure 7.2. In these tests performed for the

nonlinear nonconservative Euler equations, the discretization-error history demonstrated by Scheme # 2 (3-

point approximation for the full-potential operator) with Set (C) of practical boundary conditions is superior

comparing to all other cases of practical boundary conditions and very close to the overspeci�ed boundary

conditions (Set (A)).
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8. Conclusions and Further Research. Formulation of boundary conditions is a very important

step in design of discretization schemes. The BCSanalysis proved to be a very accurate and reliable tool

in predicting the e�ect discrete boundary conditions have on B-stability and accuracy of discrete solutions.

A general methodology for applying the BCSanalysis to discretized well-posed constant-coe�cient problem

with a given set of boundary conditions includes the following steps:

1. Assume the exact solution of the target di�erential problem to be a Fourier component and compute

right-hand side and boundary data.

2. Compute the discrete determinant operator. The stencil of the determinant operator determines the

required number of boundary conditions at the inow and outow boundaries.

3. If the total number of boundary conditions (physical boundary conditions and numerical-closure

equations) exceeds the required number, an equivalent set of boundary conditions should be formu-

lated.

4. Compute the roots of the characteristic polynomial.

5. Find the normalized characteristic solutions.

6. Find particular and general solutions of the discrete problem.

7. Substitute the general solution into the tested set of boundary conditions and compute matrix B

and vector ~d.

8. Compute the BCSmatrix and vector d. To evaluate the asymptotic behavior of the BCSmatrix as

a function of mesh size h, one can invert matrices B numerically on several grids with di�erent h

and, then, compute entry-by-entry ratios of the numerical inverses.

Practical boundary conditions considered in this paper for second-order accurate factorizable discretiza-

tions are easy to implement and result in B-stable accurate discrete solutions. The BCSanalysis and nu-

merical tests have shown that for second-order accurate solutions, some of the numerical-closure equations

must be second order. Optimization of practical boundary conditions may result in signi�cant gains (of more

than an order of magnitude) in the accuracy of discrete solutions on a given grid. Furthermore, practical

boundary conditions may also have a positive e�ect on e�ciency of multigrid solvers. It is expected that

implementation of practical boundary conditions together with appropriate local procedures accompanying

distributed relaxation should result in Laplace-like multigrid convergence for the Euler system of equations:

(1) TME is expected with multigrid solvers employing V-cycles rather than modi�cations of more ex-

pensive W- or F-cycles as in [9, 12, 18, 19, 20].

(2) Assuming very e�cient solutions of convection operators (e.g., by marching), the overall conver-

gence rates per an Euler-system distributed relaxation sweep is expected to be the same as the

corresponding per-relaxation rates for the Laplace operator, e.g., 0.38 per sweep of lexicographic

Gauss-Seidel relaxation within a V(1,1) cycle in a one-dimensional subsonic Euler problem with the

second-order accurate three-point discretization for the full-potential factor. In a similar setting

with overspeci�ed boundary conditions, TME solvers with distributed relaxation and W or F cycles

usually demonstrate convergence rates around 0.5 per relaxation.

Preliminary tests con�rm the expected e�ciency in solution of constant-coe�cient model problems corre-

sponding to the Euler system of equations.

The BCSanalysis can be regarded as a generalization to systems of equations of the half-space discrete

analysis [7, 10] that takes both the (inow and outow) boundaries into account. This connection implies

that the BCSanalysis can be used far beyond the task of boundary condition evaluation, e.g., for analyzing

iterative solvers. It can be extended to multidimensional problems by considering the target discretization
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on a layer bounded by two parallel hyper-planes. Solutions in the hyper-planes parallel to the boundaries

are represented by one Fourier component in a time. In this way, the target multidimensional problem is

translated into a one-dimensional problem, where the frequencies of the Fourier component are considered

as parameters.

The applications of theBCSmatrix analysis are extended far beyond the examples reported in this paper.

It is a very instrumental in gaining insights about global e�ects some local conditions may have on solutions.

The BCSmatrix analysis plays a central role in adjusting the interior boundary conditions for the local

procedures supplementing distributed relaxation. The main requirements for these boundary conditions is to

prevent the local procedure from error magni�cations because of the erroneous data unavoidable introduced

at the interior boundary. The relative simplicity and e�ectiveness of the BCSanalysis promise many further

important applications.
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